Calculating School Capacity

 for next generation learnersAmy Yurko, AIA
ayurko@BrainSpaces.com
Kelley Tanner
ktanner@BrainSpaces.com
originally presented 10.06 .0 I
 (inally!)

Association for Lea ming Environments

箴oriphopagenda

1. Introductions

- who \& why
- leaming objectives

2. The Basics

- teminology
- variables
- example calculations

3. New Ideas for a New Generation

- adjusted variables
- new approaches
- examples

4. Story Time (Q/A)

- sharing ideas, questions, lessonsleamed

Introductions

- why we're here, why you're here

BrainSpaces

Architects \& Educators
Brain-Based Leaming \& Environments
Collaborating with Clients around the world
Intemationally Recognized for Holistic Design
Award-winning schools

Calculating School Capacity fora New Generation of Leamers |

FThy Calculate Capactiv?

to enroll the right number of students in a school facility
or conversely
to plan a school facility that is the right size for its intended enrollment

- School construction funding
- Maximize educational resources
- Accommodate enrollments
- Overcrowding \& underutilization
- Adjust Attendance Boundaries
- others?

Learning Objectives:

to understand conventions and terminology used by local and state guidelines
to see what it takes to plan a school facility that is the right size for its intended enrollment
to see what characteristics of next generation leaming are transforming how school capacities should be calc ulated

School Capacity Derined

the number of leamers that can be reasonably accommodated by a school, building, and site.

- physical variables operational variables programmatic variables

Capacity Variables

- physic al variables can inc lude:

- build ing size/area
- number/types of spaces for lea ming
- support facilities (kitc hen, lunc hroom, restrooms, etc)
- infra struc ture (power, systems, sec unity, etc.)
- net vs gross areas
- build ing \& life-sa fety codes
- site a menities (parking, drop-offs, bus area, play a reas, etc .)

Capaciqy Variables

- operational variables can include:

- utilization rates \& effic iency
- operational policies
- staffing
- funding structures
- teacher/ union regulations
- space management
- staff \& operational budgets
- specialty program offerings

Capaciqy Variables

- programmatic variables can inc lude:
- class sizes \& staff ratios
- educational program offerings
- operational models (teams, academies, etc.)
- specialty programs
- schedules
- partnerships, off-site leaming, etc.
- extended use

蛋 Spectrum op Depinitions

Maximum Capacity

The total number of student "seats" in the school facility.

- Building Capacity

Also considers the extent of support fac ilities.

- Functional Capacity

Also considers the desired level of schedule flexibility.

- Program Capacity

Also considers demographics, c uric ulum \& program offerings.

Temporary Capacity

Also considers temporary and make-shift facilities.

Example: Maximum Capacity
 considers
 - total student "seats"
 - largely hypothetic al - diffic ult/ impossible to operate in a traditional school setting

In this example:
25 students each used 8 of 8 periods
$=100 \%$ utilization $=400$ students/day

25 students $\times 2$ rooms $=50$ students at a time
50 students x 8 periods $=400$ students per day

Functional Capacit

considers:

- total student "seats"

support fac ilities

 schedule flexibility300
In this example:
25 students each used 6 of 8 periods
= 75\% utilization
= 300 students/day

25 students $\times 2$ rooms $=50$ students at a time
50 students x © periods = 300 students per day

Progran Capacity

considers

total student "seats"

- support facilities
- schedule flexibility
- student needs/ demographics
- curic ulum \& program offerings
= 75\% utilization
= 240 students/day
240

25 students $\times 1$ room = 25 students at a time 15 students $\times 1$ room $=15$ students at a time

40 students x 6 periods = 240 students per day

Room Capacity

 C la ssro om Size VS C la ss Size- number of students
- size of classroom
- furniture \& equipment
- classroom activities
- desired flexibility

Room Capacity

 C la ssro om Size VS C lass Size- number of students
- size of classroom
- furniture \& equipment
- classroom activities
- desired flexibility

Room Capacity

 C la ssro om Size VS C la ss Size- number of students
- size of classroom
- furniture \& equipment
- classroom activities
- desired flexibility

Room
 Capacity

Classroom VS C lass Size

- number of students
- size of classroom
- furniture \& equipment
- classroom activities
- desired flexibility

Room Capacity
C lassro om VS C lass Size

- number of students
- size of classroom
- furniture \& equipment
- classroom activities
- desired flexibility

700 sf classroom $\div \mathbf{3 5}$ sf $=\mathbf{2 0}$ students

Room Capacity
C lassro om VS C lass Size

- number of students
- size of classroom
- furniture \& equipment
- classroom activities
- desired flexibility

700 sf classroom $\div 25$ students $=28$ sf

Ttilization

A) The educationa lly a ppropriate percentage of the school day that teaching stations can be used for instruction.
B) The ratio of unoccupied to occupied "seats" perteaching station per period.

URilization: Seats

c class size \& "seat" utilization
for example:

$25: 25=100 \%$
note: the number or "seats" and the actual class size don't orten match

YAH:

$25: 25=100 \%$

URilization: Seats

c lass size \& "seat" utilization
for example:

$30: 25=120 \%$
18:25 = 75\%
note: the number op "seats" and the average class size don'i orten match
W calculations are rounded forclanty
Calculating School Capacity for a New Generation of Leamers

School Type avg. utilization

Elementary 90-100\% Middle/J r. High 65-85\% High

75-95\%

Teacting Stations what counts in utilization calcs?

School Type what counts?
Eementary classrooms

Middle

High
classrooms science rooms
gymnasium (xl)
classrooms
science rooms art \& music
gyms(x2)
vocational programs
art \& music special education computer labs
special education media center a uditorium/stage computerlabs pe fields (depending on climate)
etc...

Titilization: Time

Example: Middle vsJunior High Schools

Variables in this example:

- Class size
- Schedule
- Utilization

Middle School Junior High

Teaching Stations	40	40
Class Size	25	25
Periods/day	7	7
Teacherprep	1	1
Team Planning	1	0
Periods of Instruction	5	6
Utilization Rate	71\%	86\%
Student Capacity	712	860

 Example: Middle vsJ unior High Schools

Variables in this example:

- Class size
- Schedule
- Utilization

Middle School Junior High

Teaching Stations		
Class Size	25	25
Periods/day	7	7
Teacher prep	1	1
Team Planning	1	0
Periods of Instruction	5	6
Utilization Rate	71%	86%

Student Capacity

Example: Middle vsJ unior High Schools

Variables in this example:

- Class size
- Schedule
- Utilization

Middle School Junior High

Student Capacity	800	800
Class Size	25	25
Periods/day	7	7
Teacherprep	1	1
Team Planning	1	
Periods of Instruction	5	6
Utilization Rate	71\%	86\%
Teaching Stations	45	37

Teaching Stations

a verage class size (number of leamers)

School Type
Elementary 10-25 little variety
Middle
High
class sizes:

15-35 some variety
5-50 much variety

Teaching Stations

Elementary 800-1,200 little variety Middle 400-900 some variety High 200-2,000 much variety space size basic considerations: 1) Hearners, adults
2) intended activi̛ies
3) equipment \& purniture

Rxample Calctictions comparison of facilities for science

Case "A"

$$
\begin{aligned}
& 3,200 \text { sf (2 rooms + prep) } \\
& \text { for } 50 \text { students } \\
& =56 \text { sf/student }
\end{aligned}
$$

$$
\text { size diplerence }=800 \mathrm{si} \text { or } 16 \text { si/student }
$$

Case "B"

2,600sf (2 rooms + prep)
for 50 students
= 52 sf/student

Pxample Calctiations comparison of facilities for science

Case "A"

say 25 students each used 6 of 8 periods
= 75\% utilization
= 300 students/day

main diperence $=$ area (SqTi゙)

Case "B"

say 25 students each used 6 of 8 periods
= 75\% utilization
$=300$ students/day

Rxample Caletherons
 comparison of facilities for science

Case "C"

say 75 students total used 8 of 8 periods $=100 \%$ utilization
= 600 students/day

4,000 sf

Learning Studio

Tinkering
Lab

Txample Calcmarions comparison of facilities for sc ience

Traditional Facilities for Science \& Commonly Used Capacity Calcs.

Case A:
200 Students
25 per Classroom 80\% Utilization Need 10 Classrooms 16,000 sf total
(excluding teacher offices \& small group / resource rooms)

Case B:
200 Students
25 per Classroom 80\% Utilization Need 10 Classrooms 13,000 sf total
(excluding teacher offices \& small group / resource rooms)

Environments for a New
Generation of Learners:

Case C: 200 Students 75 per Suite 100\% Utilization Need 3 Suites 12,000 sf total (all inclusive)

Sxample Caletations comparison of square-footages

Need 10 Classrooms about 16,000 s total	Need 10 Classrooms about 13,000 st total	Need 3 Suites about 12,000 sit total
		g
		ys

Calchlations: Tracitional

$200 \div 80 \%=250$ "seats" needed
$250 \div 25=10$ "classrooms" needed
$200 \div 25=8$ classrooms in use per period
$8 \div .75=11$ "teachers" \star

Calcilations: Mevy

200

 Capacity, Teachers, \& Utilization

200 @ 100\% = 200 "seats" needed
$200 \div 5$ to $50=$ Variety of spaces needed
Variety of Uses = Variety spaces used
Space for = 10-15 "teachers" \star

 Understanding current practices so you can "defrag" use of existing facilities| RM\# | Use | Traditional 8-Period Day | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | |
| 111 | English | 25 | 23 | | 26 | 30 | prep | 19 | 25 | 0.97 |
| 177 | English | 30 | 24 | (1) | 24 | 28 | 18 | prep | 26 | 1.06 |
| 201 | English/Drama | 28 | prep | | 21 | 28 | 30 | 28 | 28 | 0.83 |
| 211 | English | prep | 30 | 들 | 28 | 24 | 30 | 22 | 28 | 0.81 |
| 230 | English | 24 | 22 | 言 | 20 | prep | 23 | 24 | 30 | 0.77 |
| 241 | English | prep | 28 | 을 | 24 | 22 | 24 | 20 | 28 | 0.73 |
| 244 | English | 30 | 30 | ᄃ | 23 | 30 | OPEN | 25 | prep | 0.81 |
| 246 | English/Resource | 20 | 15 | ह | 12 | 18 | 12 | 18 | 15 | 1.05 |
| 248 | English/AP | 23 | 21 | O | prep | 22 | 28 | 23 | 28 | 0.74 |
| 249 | English | 22 | 30 | | 26 | 30 | prep | 27 | 30 | 0.81 |

National Trencs

for the median school district in the US

square	School Type	1970	1987	2006	2014	2015	2016
feet	Elementary	$\mathbf{7 0}$	$\mathbf{9 0}$	$\mathbf{1 2 0}$	149	188	135
per	Middle	$\mathbf{7 0}$	111	146	173	$\mathbf{1 7 3}$	180
student	High	$\mathbf{1 2 0}$	153	163	174	180	182

Calchlations
 Gross Building Area - What Counts?

- lockers?
- dining/kitc hen facilities?
- overhangs\& canopies?
- verticalcirculation?
- toilet facilities (specific to program)?
- exteriorwalls-to inside or outside face of wall?

 Public High School Principals Report

Those schools that principals described as overcrowded used a variety of approaches to deal with the overcrowding：
－using portable classrooms（78\％）
－converting non－classroom space into classrooms（53\％）
－inc reasing class sizes（44\％）
－building new buildings or additions（35\％）
－using off－site instructional facilities（5\％）
－orother approaches（12\％）．

Strategies por Increasing Capacify

Scheduling (daily \& a nnual) Space Utilization Multiple-Use Facilities Off-Site \& J oint-Use Facilities Reassignment of spaces

 Blended, On-line \& Virtual Lea ming others?
Strategies pre Increasing Capacity

Calendar\& Schedule

Does Not

SINGLE-TRACK SiN $\mathbf{6 0 0}$ students	MINI BREAK	MINI BREAK
BREAK		

屈dds Capacity

MULTI-TRACK (example)
Track A-200 students
Track B-200 students
Track C-200 students
Track D-200 students

Assumptions for this example:

1) school buildings can accommodate 600 students at one time, 2) school facilities can support full-capacity increases, 3) a 60/20 calendar is used, 4) multi-track schedules include common winter and summer mini-breaks.

Strategies por Increasing Capacify

Multiple-Use Facilities

Example:
a cafeteria
space that cat be
transporme
d into a
theater

W M A N South Anchorage High School: Perkins+Will and ECI Hyer

Strategies por Increasing Capacity

Multiple-Use Facilities

Example: a caleteria space that can be
transiorme
d into a
theater

b 5 Sill Soll Anchorage High School: Perkins+Will and ECI Hyer
Calculating School Capacity fora New Generation of Leamers |

Strategies por Increasing Capacify

 Multiple-Use FacilitiesExample: a dining space that serves as classroom break-هut
spaces during the rest of the day

V|r| AU GEMSWorld Academy, Chicago, IL | bKLArchitecture
I V Calculating School Capacity fora New Generation of Leamers

Strategies pre Increasing Capacity

- J oint Use or Off-Site Facilities

Example: using
comninvinity facilities as learning
environments

b|M A Nu SAMI, iDEA and SOTA, Tacoma Public Schools

Strategies por Increasing Capacity - J oint Use or Off-Site Facilities

b C A
Calculating School Capacity fora New Generation of Leamers

Strategies por Increasing Capacity

- Off-Site \& Blended Leaming

 Example: a school that has enough "seats" Por roughly half of the students enrolled the other hall of its students learn of campus b C A
Strategies pre Increasing Capacity

Multi-Use Spaces

Example: a school lobby area that can be used as a mini-
theater or large group instruction

нй

Strategies por Increasing Capacity Reassignment of Spaces

Fxample: existing spaces used por a variety of activities and groupings - lead to design of new pacilities that recognize needs por space other than "classrooms" (see next slide)

Strategies pre Increasing Capacity

 - Reassignment of Spaces
Strategies por Increasing Capacity

Faculty/Staff Support

Example:
a "think-tank" por teachers to use while planning and prep - might be modeled after a Irequent lounge (without the bar!)

lounge seating

work / dining counter
b Cl A M United Club concept

Strategies pre Increasing Capacity
 Faculty

b|c| A

Strategies por Increasing Capacity

Altemative Settings

Example:
a large
stairway that also serves
as
presentation
/ lecture hall and gathering space

b M A M Milan Centerfor Innovation | Fanning Howey

Strategies por Increasing Capacity

Altemative Settings: Roof Plaza

id Y Calculating School Capacity fora New Generation of Leamers | A4!

Strategies por Increasing Capacity

Altemative Settings: Roof Plaza

Example: a libraxy that extends its reading room out onto the adjacent (green) roo

Strategies por Increasing Capacify

Altemative Settings

Example:

 an outdoor space that can be used or school andcommunity events,
movies, and presentations

Strategies por Increasing Capacity

. Technology / Virtual Rea lity Settings

N

Recommencations

general For national, state \& local guid elines
Country: : Use Net Building Area

State: - Consider State-wide spec ifics

District: - Include District-wide practices

School: - Account for Spec ific Programs

Recommendations
 For national, state \& local guidelines

always: - Plan for the Future

- "Flex" spaces that can support programs not yet defined
- Divide spaces in ways that may be easily changed
- Nurture community relationships where leaming can extend beyond the school walls and bell schedule.
- Be prepared to use technology to not only enhance teaching and leaming, but to also redefine "where" they take place.

Calculating School Capacity

 for next generation learnerspresented by:
Amy Yurko, AIA
ayurko@BrainSpaces.com
Kelley Tanner
ktanner@BrainSpaces.com
how will your rederine learner capacity in your sciools?

Association for Lea ming Environments

